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Mobile cloud computing (MCC) provides various cloud computing services to mobile users. The rapid growth of MCC users
requires large-scale MCC data centers to provide them with data processing and storage services. The growth of these data centers
directly impacts electrical energy consumption, which affects businesses as well as the environment through carbon dioxide (CO

2
)

emissions. Moreover, large amount of energy is wasted to maintain the servers running during low workload. To reduce the energy
consumption of mobile cloud data centers, energy-aware host overload detection algorithm and virtual machines (VMs) selection
algorithms for VM consolidation are required during detected host underload and overload. After allocating resources to all VMs,
underloaded hosts are required to assume energy-saving mode in order to minimize power consumption. To address this issue,
we proposed an adaptive heuristics energy-aware algorithm, which creates an upper CPU utilization threshold using recent CPU
utilization history to detect overloaded hosts and dynamic VM selection algorithms to consolidate the VMs from overloaded or
underloaded host. The goal is to minimize total energy consumption and maximize Quality of Service, including the reduction of
service level agreement (SLA) violations. CloudSim simulator is used to validate the algorithm and simulations are conducted on
real workload traces in 10 different days, as provided by PlanetLab.

1. Introduction

Mobile devices, such as smartphones and tablets, are becom-
ing essential to human life as themost effective computational
and convenient communication tools are not bounded by
time and place. These devices are replacing desktop or laptop
computers by using the cloud computing environment or
mobile cloud computing (MCC). The MCC is a combined
infrastructure of cloud computing and mobile computing
in which data processing and storage are performed on the
cloud, and mobile devices are mainly used as client to com-
municate with the application and retrieve processed results
from the cloud [1]. The rapid growth of mobile computing
usage is evident in the study of Juniper Research, which states
that the consumer and enterprise market for cloud-based
mobile applications increased to $9.5 billion by 2014 [2],
directly impacting cloud infrastructure. Cloud computing is
leveraged on existing technologies and ideas, such as data
centers and virtualization technology. This new perspective

revolutionized traditional information technology (IT) busi-
ness by helping developers and companies overcome lack of
hardware capacity (such as CPU, memory, and storage) by
allowing users to access on-demand resources through the
Internet [3, 4].

Cloud computing is mainly divided into three types of
service models, namely, Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS).
Moreover, cloud computing has four types of deployment
models such as private, public, hybrid, and community clouds
[5, 6]. Provision of MCC services to users requires large-
scale cloud computing platform, which drains enormous
amount of electric power and increases MCC operational
costs, CO

2
emissions. Data centers consume approximately

1.3% of the total worldwide electricity supply, which is
predicted to increase to 8% by 2020 [7]. Therefore, CO

2
also

increase substantially, which directly impacts the environ-
ment. Unfortunately, large amounts of electrical energy are
wasted by servers during low workload. The server resources
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utilization data collected from more than 5000 production
servers over a six-month period have shown that most of
the time servers operate at 10% to 50% of their full capacity,
leading to wasting the energy on low utilization of resources
[8].

The Quality of Service (QoS) constraint plays an impor-
tant role between mobile cloud service providers and users.
Meeting QoS requirements is determined via Service Level
Agreements (SLAs) that describe the required performance
levels, such as minimal throughput and maximal response
time or latency of the system.Therefore, themain challenge is
tominimize power consumption ofmobile cloud data centers
while satisfying QoS requirements [9].

Hardware virtualization technology transforms tradi-
tional hardware to the new paradigm. This technology con-
solidates workload, called virtual machine (VM) consolida-
tion, and exploits low-power hardware states. Most current
studies have minimized the overall energy consumption
through two widely used techniques, such as VM consoli-
dation and dynamic server provisioning [10, 11]. Dynamic
server provisioningmethods reduce electric power consump-
tion by reducing the computational resources during low
workloads [12]. This reduction means turning the unnec-
essary servers to sleep-mode when the workload demand
decreases. Similarly, when data processing and data storage
demands increase, these servers are reactivated according to
requirements [13, 14]. The server shares its resources among
multiple performance-isolated platforms calledVMsby using
hypervisor technology. Each VM runs more than one task
simultaneously. Dynamic VM consolidation also plays an
important role in minimizing overall energy consumption
in mobile cloud data centers. The VM consolidation occurs
when a server (host) detects overload or underload, during
which VM migrates one by one from the overloaded host
to another appropriate host until the overload returns to its
normal state. Similarly, when the host detects underload,
all VMs migrate to appropriate hosts and turn this host to
sleep-mode [15, 16]. Basically, these approaches have two
main objectives:minimizing overall energy consumption and
maximizing the QoS. The QoS requirements are formalized
via SLA metric and such features are described as minimal
throughput and maximal response time or latency delivered
by the deployed system [17].

The basic task of efficient energy consumption in mobile
cloud data centers is divided into five parts as follows:

(1) Determine when a host is considered overloaded so
that some VMs would migrate one by one to other
efficient hosts under SLA constraint until the host
returns to normal state. To detect overloaded hosts,
we usedMeReg algorithm, which is introduced in this
paper.

(2) Determine when a host is considered underloaded so
that all VMs would migrate from it to the appropriate
hosts and it will turn into sleep-mode. To detect
underloaded host, we used constant lower CPU uti-
lization threshold proposed in Beloglazov and Buyya
[18].

(3) Select VMs from an overloaded host that should have
migrated from it. To select, we used our previouswork
in Yadav et al. [19].

(4) Select all VMs from an underloaded host that should
havemigrated from it. To select, we used our previous
work in Yadav et al. [19].

(5) Find a new VM allocation where selected VMs from
overloaded and underloaded hosts would be placed
to activate or reactivate hosts. We used the modified
best fit decreasing (MBFD) algorithm proposed in
Beloglazov et al. [16] for VM placement.

In this study, we proposed a regression-based adaptive
heuristic algorithm for estimating an upper threshold to
detect the overloaded hosts ofmobile cloud data center. From
these hosts, several VMs are migrated to another host to
minimize the performance degradation. We used a novel
MuMs dynamic VM selection algorithm to balance trade-offs
among electric power consumption, number of migrations,
performance of host, and total number of hosts that were
shut down. These algorithms estimate the upper threshold
and selection of VMs based on the statistical analysis of
CPU utilization history of hosts. The following are the main
contributions of this paper:

(i) An adaptive heuristic MeReg algorithm to estimate
upper CPU utilization threshold using recent CPU
utilization history for detecting overloaded hosts is
introduced. This algorithm mainly aims to minimize
overall power consumption under the required SLA
of mobile cloud data center.

(ii) The performance and effectiveness of theMeReg algo-
rithm are evaluated using the CloudSim simulator on
real and random workload traces and compared with
other proposed approaches in the literature.

The rest of this paper is organized as follows: In Section 2,
we discussed some previous literature related tomobile cloud
data center resources and energy efficiency management. In
Section 3, we presented the mobile cloud platform archi-
tecture. Section 4 is a key part of this paper where we
discussed host overload detection. In Section 5, we proposed
energy efficiencymetric formeasuring the effectiveness of the
proposed algorithms in the cloud environment. In Section 6,
the experiment setup for proposed algorithms is discussed.
In Section 7 results of the proposed algorithms are analysed
and compared, and in Section 8, the study is concluded by a
summary with future research direction.

2. Related Work

Researchers have examined the design of mobile cloud
models and its associated software architecture [20]. A
paradigm shift is evident from traditional to mobile cloud
computing which requires large-scale of cloud data center,
wherein the cost of computational resources is no longer the
major portion of the overall cost. However, the cost of
power consumption and cooling infrastructure are still con-
sidered primary cost drivers. Power consumption and CPU
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utilization in servers or mobile are directly proportional
to one another [21, 22]. Therefore, recent techniques for
minimizing power consumption and maximizing QoS are
discussed in this study. In one of the first works introduced
by Zhang et al. [23], dynamic efficient energy techniques for
mobile computing that schedule multiple computing tasks
are dynamically reconfigured and selectively turned off to
minimize overall energy consumption in mobile computing.

Esfandiarpoor et al. proposed a VM consolidation algo-
rithm that efficiently reduces energy in cloud data center
by considering structural features, such as racks and net-
work topology. Moreover, they focused on the cooling and
network structure of cloud data center hosting the physical
machines when consolidating VMs. Few racks and routers
are employed without compromising the SLA so that idle
routing and cooling equipment could be turned off to reduce
energy consumption [24]. Zhu et al. [25] investigated the
dynamic VM consolidation problem and applied a static host
CPU utilization threshold of 85%, which is determined if the
host is overloaded when CPU utilization threshold exceeded
85%. However, static CPU threshold is unsuitable for systems
with dynamic workload, as this static model does not adapt
to system workload changes. In this study, we introduced a
dynamic adapt threshold value according to the statistical
analysis of workload history.

Nathuji and Schwan [26] proposed dynamic VM consol-
idation to minimize the energy consumption of hosts in data
centers. They investigated energy management techniques
in the large-scale virtualized resources of data center. They
proposed a new energy management method for virtualized
resources of data center called Soft Resource Scaling. In
addition, the authors suggested dividing the resource man-
agement problem into two levels: local and global. At the local
level, the algorithms handle the energy management of guest
VMs. By contrast, global policies coordinatemultiple physical
machines. They also explored the benefits of efficient energy
consumption using livemigration and found that total energy
consumption can be significantly reduced.

Beloglazov et al. [16] proposed a cloud computing archi-
tectural framework and the provision of mobile cloud data
center resources in power efficient manner, while meeting
SLA requirements. They established two parts of the VM
consolidation problem: (1) submission of new requests for
VM provisioning and allocation of VMs on hosts; (2) sig-
nificant use of current VM allocations. To solve the problem
of VM placement on hosts, they used the MBFD algorithm.
This algorithm first sorts current CPU utilization of all
VMs in decreasing order and allocates each VM to a host,
which provides efficient energy consumption environment.
In another work, Beloglazov and Buyya [18] introduced a
heuristic-based energy-aware approach, which focused on
the statistical analysis of CPU utilization history to determine
an upper threshold for detecting overloaded hosts

Ranganathan et al. [27] described server power manage-
ment method at the collective systems level instead of the
individual server level. This approach permits active servers
to borrow power from inactive servers. Similarly, Venkat-
achalam et al. [28] introduced an efficient energy technique
for minimizing the overall energy consumed by the server

CPU at a given period. They also focused on GPU electric
energy consumption.

The energy consumption of the data centers is broken
down in [29, 30]. Most studies have considered energy
consumption modeling at the CPU level: however, network
devices also consume considerable amount of energy in terms
of data center energy consumption.Therefore, load balancing
of data center network devices is important to minimize the
energy consumption cost. Shang et al. [31, 32] introduced
a distributed green-routing algorithm which consider com-
putation, communication, and thermal temperature within
the data center. The future decision of the proposed load-
balancing algorithm requires a full energy model including
networks and servers in the data center. Liu et al. [33] intro-
duced a distributed flow scheduling (DFS) for efficient energy
consumption in data center network devices. However, this
approach did not consider the nature of communication
sources, sinks, and corresponding computation.

3. System Architecture

The general architecture of MCC includes mobile devices,
network connection, and cloud computing data center. In
Figure 1, mobile devices are directly connected to the base
station using themobile network.The base station establishes
and controls the air connection between mobile devices and
the network [34] and communicates with the cloud data
center via the Internet to complete the task of the mobile
users such as data processing and storage. The cloud data
center includes numerous virtualized resources to improve
performance of the services. These resources consist of 𝑛
heterogeneous hosts. Wherein each host contains multicore
CPU, primary memory, secondary memory, and network
I/O. The CPU performance is determined in terms of mil-
lions of instruction per second (MIPS). The submission of
multiple requests for VM provisioning is allocated to hosts
simultaneously. The allocation of VMs to hosts is based on
CPU utilization of the host. The energy consumed by the
CPU is linearly proportional to its utilization [18]. Therefore,
efficient consolidation of VM would reduce the electric
energy consumption and the SLA violation rate. When the
running VM cannot obtain its resources from the cloud
data center such as MIPS and memory, then SLA violation
would occur. In this case, a cloud service provider should
pay cloud service users penalty, when an overloaded host is
confirmed.The next step is selecting VMs formigration from
the overloaded host to appropriate host and apply iteratively
to the host until it is no longer considered overloaded.

In this MCCmodel, three main important players handle
all workflows within cloud data centers. The key players
are global controller, local controller, and virtual machine
manager (VMM). A local controller resides in each host as
a separate VM and is tasked to monitor the status of the VM,
and CPU utilization as well as decide what time VM should
be migrated from the host. The global controller resides on a
single master host and gathers all information from the local
controller tomaintain overall resources utilization.Moreover,
it decides where VM should be optimally placed. Finally, the
VMM resides along the hypervisor and helps in resizing the
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Table 1: The electric energy consumed by the considered servers at different level of workload in watts (W).

Server 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Fujitsu M1 13.3 18.3 21.1 23.4 26.5 29.6 34.7 40.7 46.8 57.4 60
Fujitsu M3 12.4 16.7 19.4 21.4 23.4 26.1 29.7 34.8 41 47.1 51.2
Hitachi TS10 37 39.9 43.2 45.5 48.8 52.8 57.8 65.1 73.8 80.8 85.2
Hitachi SS10 36 38.8 41.2 43.7 46.3 49.4 53.1 58.8 64.2 67 69.7

Cloud computing

Host 1

Hypervisor VMM

VM Local
controllerVM

Host n

HypervisorVMM

VMLocal
controller VM

Global controller

Figure 1: Mobile cloud computing system architecture.

VM and changes the power state of the host, which helps
efficiently utilizing energy.

3.1. Energy Model. Relative to other types of equipment,
the major energy consumers of mobile cloud data center
components are CPU, network, and memory. Recent works
show that the electric power consumed by the host’s processor
is directly proportional to its utilization. Utilization of the
processor depends on the workload of the host and changes
according to the variability of the workload [35]. Therefore,
utilization of the processor is a function of time, and its value
changes according toworkload variability.Theoverall electric
energy consumption by the host can be defined as an integral
function of the power consumed by the host at a given period
and is described as follows [16]:

𝐸 = ∫𝑡1
𝑡0

𝑃 (𝑢 (𝑡)) 𝑑𝑡, (1)

where 𝐸 is the total electric energy consumed by the server.𝑃(𝑢(𝑡)) is the continuous function of workload utilization at
time 𝑡.

Moreover, we considered four different types of hosts,
namely, Fujitsu M1, Fujitsu M3, Hitachi TS10, and Hitachi
SS10. The features of these hosts are shown in Table 2. The
energy consumption of these servers is obtained from the
SPECpower [36]. The electric energy consumption of these
hosts at different workloads is shown in Table 1.

Table 2: Characteristics of the hosts.

Server CPU Core Clock speed Memory
Fujitsu M1 Xeon 1230 4 2.7GHz 8GB
Fujitsu M3 Xeon 1230 4 3.5GHz 8GB
Hitachi TS10 Xeon 1280 4 3.5GHz 8GB
Hitachi SS10 Xeon 1280 4 3.6GHz 8GB

4. MeReg Host Overloaded Detection

The mobile cloud computing platform has recently become
popular worldwide because of its dynamic nature. However,
the dynamic characteristics of mobile cloud computing pose
a big concern for cloud service provider (CSP).Therefore, the
constant CPUutilization threshold is unsuitable for detecting
an overloaded host in cloud environments. We proposed
a novel algorithm for host overload detection based on a
regression model called𝑀 estimator regression model. This
algorithm dynamically estimates the upper CPU utilization
threshold based on the historical dataset of CPU utilization,
which is automatically adjusted according to the historical
CPU workload.

Robust regression techniques providemore efficient opti-
mal solution than traditional approaches. These techniques
are not directly influenced by the outlier in the dataset,
which makes it more robust and trustworthy for the dynamic
environment of the cloud. The “M estimation Regression”
(MeReg) generates a regression line in which the median
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of the squared residuals is minimized [37]. The MeReg is a
more robust estimator than the median, standard deviation,
variance, and ordinary least squares estimators. “Ordinary
least squares (OLS) have the following disadvantages: (1) a
single corrupt data point can give the resulting regression
line an arbitrarily large slope; (2) it can behave badly when
the residual distribution is not normal, particularly when
the residuals are heavily tailed” [38, 39]. To initialize the
MeReg algorithm, we first need to generate the OLS model
representing the relationship between input data 𝑋 and the
value of the output data 𝑌 using line the straight as follows:

𝑌
𝑖
= 𝜃
1
+ 𝜃
2
𝑋
𝑖
+ 𝜀
𝑖
,

𝜀
𝑖
= 𝑌
𝑖
− (𝜃
1
+ 𝜃
2
𝑋
𝑖
) , (2)

where 𝜀
𝑖
is the independent variable called residuals. This

model mainly aims to minimize the value of residuals 𝜀
𝑖
. If

the values of all residuals 𝜀
𝑖
converge to the zero, then an

optimal model is generated, wherein all given data points
lie on this model. 𝑖 ∈ 𝑉, where 𝑉 is set of all VMs CPU
utilization dataset of the data center. The goal is to minimize
the sum of distance between the estimated linear parameter
and actual CPU utilization data point.The objective function
of estimation can be defined as follows:

minF (𝜀
𝑖
) = 𝑚∑
𝑖=1

(𝑌
𝑖
− (𝜃
1
+ 𝜃
2
𝑋
𝑖
))

𝜎 ,

𝜎 = median 𝜀𝑖 −median (𝜀
𝑖
)0.6745 ,

(3)

where 𝜎 represents a residuals standard deviation of CPU
utilization data point. To make this model more robust,
Tukey’s bisquare function as an objective function of M
estimation is used,where 𝜀

𝑖
is the residual divided by residuals

standard deviation, and constant 𝑐 is called a tuning constant.
The small value of 𝑐 produce increases resistance to outliers
but at the expense of very low efficiency when the residuals
are normally distributed. Therefore, the value of 𝑐 = 4.685 is
usually selected to provide 95% efficiency when the residuals
are normally distributed [39]. The U(𝜀

𝑖
) bisquare objective

function is given as follows:

U (𝜀
𝑖
) =

{{{{{{{

𝜀
𝑖

2

2 − 𝜀𝑖42𝑐2 +
𝜀
𝑖

6

6𝑐4 , 𝜀𝑖 ≤ 𝑐
𝜀
𝑖

2

6 𝜀𝑖 > 𝑐.
(4)

To define the weight function of the residuals, we should
obtain the partial differentiation of this equation with respect
to 𝜃
2
. Let 𝜓 be the first derivative function of F(𝜀

𝑖
), which

define the weight function

𝑚∑
𝑖=1

𝑋
𝑖
𝜓((𝑌𝑖 − (𝜃1 + 𝜃2𝑋𝑖))𝜎 ) = 0,

𝑤 (𝜀
𝑖
) = 𝜓 (𝜀𝑖)𝜀

𝑖

.
(5)

The weight function w of this model also changed
according to observations.

𝑤
𝑖
= {{{{{

(1 − (𝜀𝑖𝑐 )
2)
2

, 𝜀𝑖 ≤ 𝑐
0, otherwise.

(6)

To determine the optimal solutions or values of 𝜃
1
and 𝜃
2

by Tukey’s bisquare weighted function,
𝑚∑
𝑖=1

𝑋
𝑖
𝑤
𝑖
((𝑌𝑖 − (𝜃1 + 𝜃2𝑋𝑖))𝜎 ) = 0. (7)

We utilize this approach to fit a trend polynomial model
to all observations of the CPU utilization of VMs. In every
iteration, weight function is defined according to new resid-
uals that is called iteratively reweighed least squares and is
repeated until it converges to the optimal values of 𝜃

1
and 𝜃
2
,

which determine the minimum value of U(𝜀
𝑖
) metric. This

minimum value is called MeReq, which estimates the upper
threshold of CPU utilization.

The detection of the overloaded host is determined by
the upper CPU utilization threshold metric used in [18]. We
extended this metric through MeReg to detect overloaded
hosts shown as follows:

𝑈𝑝𝑇 = 1 − 𝑝 ×𝑀𝑒𝑅𝑒𝑞, (8)

where 𝑝 is the safety parameter of this algorithm, which
define how fast the system is in consolidatingVMs.Moreover,
the small value of safety parameter 𝑝 implies low energy
consumption but high SLA violation and vice versa [18]. The
pseudocode of MeReg host overloaded detection algorithm,
which helps in understanding the full workflow of the
algorithm, is discussed in Algorithm 1.

5. Efficiency Metrics

Variousmatrices are used to evaluate the results and compare
the effectiveness of the algorithm. The first metric is called
total energy consumed by the data center resources at
different workloads. The second type of efficiency metric
is the average percentage of the SLA violation, which only
occurs when provision VMs are not obtaining the requested
resources (or when the average computing power of the
shared host is not allocated to the requested VMs). This
metric directly influence the QoS, which is not negotiated
between cloud provider and its users. If an SLA violation
occurs, then the CSP should pay some penalty to users.

5.1. Performance Metric (Pertric). To maximize the overall
performance with minimum energy consumption, average
SLA violation, and number of the reactivation hosts, we
introduced a performance metric. If the host reactivated
from energy saving-mode called reactivated host.These hosts
directly affect the energy consumption of the data center. To
address this concern, a performance metric is described as
follows:

𝑃𝑒𝑟𝑡𝑟𝑖𝑐 = 𝐴𝑆𝐿𝐴 × 𝐻𝑆 × 𝐸, (9)
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(1) Input: Dataset of the CPU utilization(2)Output: Boolean // Host is overloaded or Not(3) Initiate the Y[] and X[] // Y[] is the CPU utilization dataset.(4) for each j ∈ [1, 100] do(5) for each i ∈ [Y.length] do(6) 𝜀
𝑖
← 𝑌
𝑖
− (𝜃
1
+ 𝜃
2
𝑋
𝑖
)(7) end for(8) Calculated the 𝜎

(9) 𝜎 ← median|𝜀
𝑖
−median(𝜀

𝑖
)|

0.6745(10) Initialised 𝜀
𝑖
[] array(11) for each i ∈ [Y.length] do

(12) 𝜀
𝑖
← (𝑌𝑖 − (𝜃1 + 𝜃2𝑋𝑖))𝜎(13) end for(14) Calculate Tukey’s bisquare function(15) if 𝜀

𝑖
≤ 𝑐 then

(16) U(𝜀
𝑖
) ← 𝜀𝑖22 − 𝜀

𝑖

4

2𝑐2 +
𝜀
𝑖

6

6𝑐4(17) else if 𝜀
𝑖
> 𝑐 then

(18) U(𝜀
𝑖
) ← 𝜀𝑖26(19) Calculate the weighted value(20) if 𝜀

𝑖
≤ 𝑐 then

(21) 𝑤
𝑖
← (1 − (𝜀𝑖𝑐 )

2)
2

(22) else if 𝜀
𝑖
> 𝑐 then(23) 𝑤

𝑖
← 0(24) Finding the value of 𝜃

1
and 𝜃

2
by using as follows

(25) ∑𝑚
𝑖=1
𝑋
𝑖
𝑤
𝑖
((𝑌𝑖 − (𝜃1 + 𝜃2𝑋𝑖))𝜎 ) ← 0

(26) end for(27)MeReg←minimum value ofU(𝜀
𝑖
)

(28) upT← p ×MeReg
(29) returnHostUtilisation >upT

Algorithm 1:MeReg host overloaded detection.

where 𝑃𝑒𝑟𝑡𝑟𝑖𝑐 represents the overall performance metric,𝐻𝑆 represents the total number of the host shutdowns after
applying these algorithms, and 𝐸 is the total electric energy
consumption of the data center. The average SLA violation
percentage in the data center is represents as 𝐴𝑆𝐿𝐴.

6. Experiment Setup

The deployment of real large-scale virtualized infrastructure
is very expensive and conducting a repeatable experiment to
analyse and compare the result of the proposed algorithm
is difficult. Therefore, simulation is a best choice for evalu-
ating VM selection policy to repeat the experiment of the
proposed algorithms. We chose the CloudSim toolkit [40]
for analysis and compared the performance of the proposed
host overloaded detection algorithm. This is a modern open
source simulator, which provides an IaaS cloud computing
framework that enables us to conduct repeatable experiments
for which results can be analysed and compared on large-
scale virtualized cloud data centers.

Table 3: Types of Amazon EC2 VM.

VM Types MIPS Memory
Hight-CPU instance 2500 850MB
Extra-large instance 2000 3750MB
Small instance 1000 1700MB
Microinstance 500 613MB

In our cloud computing simulation setup, we installed
800 heterogeneous servers with real configurations. These
hosts are Fujitsu M1, Fujitsu M3, Hitachi TS10, and Hitachi
SS10. The features of these servers are presented in Table 2.
The electric energy consumption of these servers at different
workloads is shown in Table 1.

The CPU clock speed of servers is mapped onto MIPS
ratings; that is, each core of the servers FujitsuM1, FujitsuM3,
Hitachi TS10, and Hitachi SS10 is mapped 2700, 3500, 3500,
and 3600MIPS, respectively.The network bandwidth of each
server is modeled to possess 1 GB/s. The corresponding VM
types are supported byAmazonEC2VM, as shown inTable 3.
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(c) Number of host shutdowns
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Figure 2: Evaluation of the proposed host overload detection algorithm using random workload.

Simulationmust be conducted using real workload traces
of the data center server, which is applicable on real cloud
environment. To achieve this objective, we used the data
provided by PlanetLab as part of the CoMon project [41].
We utilized more than a thousand heterogeneous VM CPU
utilization data from more than 500 heterogeneous servers
placed worldwide.The features of the data daily are discussed
in Beloglazov and Buyya [18].

7. Simulation and Analysis

Real time CPU utilization data of heterogeneous servers is
used to evaluate the performance of MeReg host overloaded
detection algorithm. We simulated the proposed algorithm
with the MuMs VM selection scheme and compared it

with the overloaded hosts detection algorithms and VM
selection policy described in Beloglazov and Buyya [18].
These overloaded host algorithms are median absolute devia-
tion (MAD), and interquartile range (IQR) with maximum
correlation (MC), minimum migration time (MMT), and
minimum utilization (MU) of VM selection policy. We
used the values of safety parameters (𝑝) 1, 2.5, and 1.5 for
MeRegMuMs,MAD, and IQR, respectively.

7.1. Random Workload. In the random workload, every VM
runs an application with a variable utilization of CPU, which
is generated with a uniform distribution. In Figure 2(a),
the electric energy consumption by using MeRegMuMs host
overloaded detection algorithm must be lesser than the
other approaches. Figure 2(b) shows significant reduction
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in average SLA violation. Moreover, in Figures 2(c) and
2(d) the number of shutdown hosts and VM migrations are
also reduced more efficiently than the other host overloaded
detection algorithms.

7.2. Real Workload. The real workload dataset is provided by
the PlanetLab as part of the CoMon project. In the CoMon
project, data of thousands of VMs CPU utilization worldwide
are collected every five minutes and stored in different
extension files. We selected this real dataset to evaluate the
proposed policy. Analysis of the proposed policy using real
workload is discussed in the following subsections.

7.2.1. Evaluation of Energy Consumption. The total electric
energy consumption of the resources of the hosts in the
data center depends on CPU utilization, primary memory,
network devices, and disks. However, numerous studies have
revealed that the host CPU consumes more electric energy
than other resources in the hosts [29]. Therefore, we are
more focused on the CPU utilization of hosts. In this section
we analysed the simulation of MeRegMuMs host overloaded
detection with the MAD and IQR. As shown in Figure 3,
electric energy consumption by the proposed algorithm is
17.3% lesser than means of other algorithms.

7.2.2. Evaluation of the Average SLA Violation. Maintaining
the QoS is an important aspect of cloud computing envi-
ronment. The required QoS are determined by SLAs [9]. In
this section, we analysed and compared the percentage of
average SLAviolation in overloaded hosts. Cloudusers do not
want SLA violation and performance degradation. If these
situations occur then CSP should pay the penalty to users.
Thus, reduced SLAviolation is desired amongusers andCSPs.
Figure 4 shows that the percentage of average SLA using the
MeRegMuMs host overloaded detection is 23.3% lesser than
that of traditional algorithms.

7.2.3. Number of Host Shutdowns and VM Migrations. The
cost of dynamic live migration of VMs is always high,
which includes processing power on the allocated host, and
performance degradation [9, 14]. Therefore, minimizing the
total number of VMs migrations is one of the objectives
of this study. In this section, we analysed and compared
the simulation of the number of host shutdowns and VM
migrations. If the number of reactivated hosts increase, then
energy consumption is maximized. The host is reactivated to
allocate new VMs and shutdown when it detect underload.

In the experiment environment, we installed 800 hosts
but the number of host shutdowns is greater than 800 due to
host reactivation. Figure 5 shows that the proposed algorithm
also,minimized 25.9%of host reactivations of hosts relative to
traditional MadMmt, MadMc, MadMu, IqrMmt, IqrMc, and
IqrMu algorithms.

Meanwhile, the number of migration is directly pro-
portional to performance degradation. If the total number
of VM migrations decreases then performance degradation
also decreases, which is desired by users and CSPs. The
comparison of the proposed policy VMmigration with other
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Figure 3: Energy consumption comparison using real workload.
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Figure 4: Comparison of the average percentage of SLA violation.

old algorithms proposed in Beloglazov and Buyya [18] is
described in Figure 6.

7.2.4. Evaluation of Pertric. In this section, we discussed the
overall performance of the cloud data center using proposed
MeReg host overloaded detection algorithm. The overall
performance calculated by the Pertric metric proposed in
Section 5.1 is also discussed.Themain objective is to propose
this metric to analyse the all aspects of energy-awareness in
the cloud data center, such as minimization of electric energy
consumption, average percentage SLA violation, and number
of reactivated hosts for placing new VMs.

Figure 7 shows the effectiveness of the MeReg host
overload detection algorithms using MuMs VMs selection
policy relative to other old host overload detection algorithms
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Figure 5: Total number of host shutdowns.
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Figure 6: Total number of VMmigrations.

using VM selection policies such as MadMmt, MadMc,
MadMu, IqrMmt, IqrMc, and IqrMu.

7.2.5. Statistical Analysis. Statistical analysis validated the
proposed algorithm, and the results demonstrated the effi-
ciency of the proposed algorithm compared with other
approaches. One-way ANOVA on the Pertric Matrices is
conducted to analyse the tradeoff between minimizing the
overall energy consumption and maximizing the QoS of the
data center demonstrated in Table 4. Based on the One-way
ANOVA result, MeRegMuMs significantly reduced energy
consumption and maximized QoS, compared with MadMc,
MadMmt,MadMu, IqrMc, IqrMmt, and IqrMu. Table 4 shows
that the F ratio (10.61) is greater than the F critical value
(2.24), which indicates that the null hypothesis is rejected
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Figure 7: Performance metric (Pertric) comparison.

and the populationmeans are significantly different from one
another at the 0.05 level. Therefore, the MeRegMuMs algo-
rithm is significantly different from other algorithms, such as
MadMc, MadMmt, MadMu, IqrMc, IqrMmt, and IqrMu with𝑝 value of 4.068𝐸 − 8.

One sample 𝑡-test of VM migration time duration and
host running time is also carried out.The average value of the
sample mean times before a VM migration during the host
detection underload or overload is 19.67 seconds with a 95%
CI: 18.23, 20.12. The average value of the sample means host
running time before transition to energy-saving-mode is 21.3
minutes with 95% CI: 20.2, 22.8.

8. Conclusion and Future Work

Mobile cloud computing enables seamless and rich func-
tionality of the cloud computing services to mobile users.
Mobile cloud data centers worldwide are growing according
to the increasing demand of data processing and storage by
mobile users.Therefore, to keep themobile cloud data centers
running,massive amount of electric energy is required,which
leads to high operational costs andCO

2
emission. High emis-

sion ofCO
2
negatively impacts the social environment. In this

study, we introduced a novel adaptive heuristic host overload
detection algorithm called MeReg, which minimizes electric
energy consumption and maximize QoS in terms of required
SLA of the data center. A host overload problem directly
influences VM performance, which is totally against SLA.
Therefore, a regression-based technique called M estimation
is used to find optimal upper CPU utilization threshold
for detecting overloaded hosts. For VM consolidation from
overloaded hosts, the approach used in previous study called
MuMs policy is implemented, which selects VM from over-
loaded or underloaded hosts and migrates it to appropriate
hosts. CloudSim simulator is used in the implementation of
the proposed algorithm to obtain the results using 10 different
real workload traces.
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Table 4: Summary of the one-way ANOVA test.

Source of variation df SS (×1010) MS (×1010) F ratio 𝑝 value F critical
Between groups 6 347 57.8 10.61 4.07𝐸 − 8 2.246
Within groups 63 343 5.45
Total 69 690

In the future, we plan to further extend this work by
introducing a machine learning based technique called
Markov chain for VM consolidation policy, which works bet-
ter in a dynamic environment such as cloud computing. The
implementation of these algorithms in the open source real
cloud platform such as OpenStack would also be studied.
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